When does a closed ideal of a commutative unital Banach algebra contain a dense subideal?
نویسندگان
چکیده
منابع مشابه
When does the complement of the annihilating-ideal graph of a commutative ring admit a cut vertex?
The rings considered in this article are commutative with identity which admit at least two nonzero annihilating ideals. Let $R$ be a ring. Let $mathbb{A}(R)$ denote the set of all annihilating ideals of $R$ and let $mathbb{A}(R)^{*} = mathbb{A}(R)backslash {(0)}$. The annihilating-ideal graph of $R$, denoted by $mathbb{AG}(R)$ is an undirected simple graph whose vertex set is $mathbb{A}(R...
متن کاملWhen does a Polynomial Ideal Contain a Positive Polynomial?
We use Gröbner bases and a theorem of Handelman to show that an ideal I of R[x1, . . . , xk] contains a polynomial with positive coefficients if and only if no initial ideal inv(I), v ∈ R, has a positive zero. Let R = R[x1, . . . , xk], R = R[x1, . . . , xk] and, considering Laurent polynomials, let R̃ = R[x1 , . . . , xk ], R̃ = R[x ± 1 , . . . , x ± k ]. For a = (a1, . . . , ak) ∈ Z, write x = ...
متن کاملJoint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملwhen does the complement of the annihilating-ideal graph of a commutative ring admit a cut vertex?
the rings considered in this article are commutative with identity which admit at least two nonzero annihilating ideals. let $r$ be a ring. let $mathbb{a}(r)$ denote the set of all annihilating ideals of $r$ and let $mathbb{a}(r)^{*} = mathbb{a}(r)backslash {(0)}$. the annihilating-ideal graph of $r$, denoted by $mathbb{ag}(r)$ is an undirected simple graph whose vertex set is $mathbb{a}(r)...
متن کاملThe sum-annihilating essential ideal graph of a commutative ring
Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Functiones et Approximatio Commentarii Mathematici
سال: 2011
ISSN: 0208-6573
DOI: 10.7169/facm/1308749132